Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 May 7;279(19):19755-63. Epub 2004 Mar 3.

Salicylihalamide A inhibits the V0 sector of the V-ATPase through a mechanism distinct from bafilomycin A1.

Author information

  • 1Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA. Xiao-Song.Xie@UTSouthwestern.edu

Abstract

The newly identified specific V-ATPase inhibitor, salicylihalamide A, is distinct from any previously identified V-ATPase inhibitors in that it inhibits only mammalian V-ATPases, but not those from yeast or other fungi (Boyd, M. R., Farina, C., Belfiore, P., Gagliardi, S., Kim, J. W., Hayakawa, Y., Beutler, J. A., McKee, T. C., Bowman, B. J., and Bowman, E. J. (2001) J. Pharmacol. Exp. Ther. 297, 114-120). In addition, salicylihalamide A does not compete with concanamycin or bafilomycin for binding to V-ATPase, indicating that it has a different binding site from those classic V-ATPase inhibitors (Huss, M., Ingenhorst, G., Konig, S., Gassel, M., Drose, S., Zeeck, A., Altendorf, K., and Wieczorek, H. (2002) J. Biol. Chem. 277, 40544-40548). By using purified bovine brain V-pump and its dissociated V(1) and V(0) sectors, we identified the recognition and binding site for salicylihalamide to be within the V(0) domain. Salicylihalamide does not inhibit the ATP hydrolysis activity of the dissociated V(1)-ATPase but inhibits the ATPase activity of the holoenzyme by inhibiting the V(0) domain. Salicylihalamide causes a dramatic redistribution of cytosolic V(1) from soluble to membrane-associated form, a change not observed in cells treated with either bafilomycin or NH(4)Cl. By synthesizing and characterizing a series of salicylihalamide derivatives, we investigated the structural determinants of salicylihalamide inhibition in terms of potency and reversibility, and used this information to suggest a possible binding mechanism.

PMID:
14998996
DOI:
10.1074/jbc.M313796200
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center