Format

Send to

Choose Destination
Lab Invest. 2004 Apr;84(4):440-51.

Different types of glomerulopathic light chains interact with mesangial cells using a common receptor but exhibit different intracellular trafficking patterns.

Author information

1
Department of Pathology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.

Erratum in

  • Lab Invest. 2004 Sep;84(9):1219.

Abstract

Patients with plasma cell dyscrasias may have circulating light chains (LCs), some of which are nephrotoxic. Nephrotoxic LCs can affect the various renal compartments. Some of these LCs may produce predominantly proximal tubular damage, while others are associated with distal nephron obstruction (the so-called "myeloma kidney"). Both these are considered tubulopathic (T) LCs. A receptor has been found in proximal tubular cells (cubilin/megalin complex), which mediates the absorption of LCs and is involved in the pathogenesis of tubulopathies that occurs in these patients. Another group of nephrotoxic LCs is associated with glomerular damage and these are considered as glomerulopathic (G). These patients with G-LCs may develop AL-amyloidosis (AL-Am) or LC deposition disease (LCDD). Recent evidence indicates that the physicochemical characteristics (amino-acid composition and conformation of the variable region) of a given nephrotoxic LC may be the most significant factor in determining the type and location of renal damage within the nephron. Other factors may also be involved, including yet uncharacterized host factors that may include genetic polymorphism, among others. Interestingly, the amount of LC production by the clone of plasma cells does not correlate directly with the severity of the renal alterations. Understanding the nature of the interactions between G-LCs and mesangial cells (MCs) is crucial to define key steps that may be targeted for therapeutic purposes. Experimental studies have delineated important aspects pertaining to interactions between G-LCs and MCs, indicating that these interactions are receptor mediated. The data presented in the current study support a single receptor present on MCs for both LCDD and AL-LCs, as clearly demonstrated with competition and colocalization immunofluorescence (IF) studies. This receptor resides in caveolae present on the plasma membrane of HMCs and is overexpressed when HMCs are incubated with G-LCs but not TLCs. Caveolae play a fundamental role in receptor-mediated endocytosis, a crucial process in the internalization of AL-LCs and amyloidogenesis. LC internalization is clathrin mediated. The data also indicate that intracellular trafficking in MCs is different for AL-LCs and LCDD-LCs. AL-LCs are delivered to the mature lysosomal compartment where amyloid formation occurs. LCDD-LCs alter mesangial function and phenotype by interacting with the MC surface membranes through similar receptors as the AL-LCs. The data also demonstrated that cubilin and megalin were absent on MCs, so the receptor involved is different from the one already characterized in the proximal tubules.

PMID:
14990980
DOI:
10.1038/labinvest.3700069
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center