Send to

Choose Destination
See comment in PubMed Commons below
Development. 2004 Apr;131(7):1491-501. Epub 2004 Feb 25.

Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation.

Author information

  • 1Department of Biology, University of Washington, Seattle, WA 98195, USA.


Growth of plant organs relies on coordinated cell proliferation followed by cell growth, but the nature of the cell-cell signal that specifies organ size remains elusive. The Arabidopsis receptor-like kinase (RLK) ERECTA regulates inflorescence architecture. Our previous study using a dominant-negative fragment of ERECTA revealed the presence of redundancy in the ERECTA-mediated signal transduction pathway. Here, we report that Arabidopsis ERL1 and ERL2, two functional paralogs of ERECTA, play redundant but unique roles in a part of the ERECTA signaling pathway, and that synergistic interaction of three ERECTA-family RLKs define aerial organ size. Although erl1 and erl2 mutations conferred no detectable phenotype, they enhanced erecta defects in a unique manner. Overlapping but distinct roles of ERL1 and ERL2 can be ascribed largely to their intricate expression patterns rather than their functions as receptor kinases. Loss of the entire ERECTA family genes led to striking dwarfism, reduced lateral organ size and abnormal flower development, including defects in petal polar expansion, carpel elongation, and anther and ovule differentiation. These defects are due to severely reduced cell proliferation. Our findings place ERECTA-family RLKs as redundant receptors that link cell proliferation to organ growth and patterning.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center