Format

Send to

Choose Destination
See comment in PubMed Commons below
Annu Rev Physiol. 2004;66:239-74.

Metabolic rate and body temperature reduction during hibernation and daily torpor.

Author information

1
Zoology, Center for Behavioural and Physiological Ecology, University of New England, Armidale, NSW Australia 2351. fgeiser@metz.une.edu.au

Abstract

Although it is well established that during periods of torpor heterothermic mammals and birds can reduce metabolic rates (MR) substantially, the mechanisms causing the reduction of MR remain a controversial subject. The comparative analysis provided here suggests that MR reduction depends on patterns of torpor used, the state of torpor, and body mass. Daily heterotherms, which are species that enter daily torpor exclusively, appear to rely mostly on the fall of body temperature (Tb) for MR reduction, perhaps with the exception of very small species and at high torpor Tb, where some metabolic inhibition may be used. In contrast, hibernators (species capable of prolonged torpor bouts) rely extensively on metabolic inhibition, in addition to Tb effects, to reduce MR to a fraction of that observed in daily heterotherms. In small hibernators, metabolic inhibition and the large fall of Tb are employed to maximize energy conservation, whereas in large hibernators, metabolic inhibition appears to be employed to facilitate MR and Tb reduction at torpor onset. Over the ambient temperature (Ta) range where torpid heterotherms are thermo-conforming, the Tb-Ta differential is more or less constant despite a decline of MR with Ta; however, in thermo-regulating torpid individuals, the Tb-Ta differential is maintained by a proportional increase of MR as during normothermia, albeit at a lower Tb. Thermal conductance in most torpid thermo-regulating individuals is similar to that in normothermic individuals despite the substantially lower MR in the former. However, conductance is low when deeply torpid animals are thermo-conforming probably because of peripheral vasoconstriction.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center