Format

Send to

Choose Destination
Virus Genes. 2004 Mar;28(2):207-14.

Isolation, molecular characterisation and genome sequence of a bacteriophage (Chp3) from Chlamydophila pecorum.

Author information

1
Molecular Microbiology and Infection, University Medical School, Southampton General Hospital, Southampton SO16 6YD, UK. sag1@soton.ac.uk

Abstract

Chlamydiae are obligate intracellular pathogens that have a unique developmental cycle. Thirty nine viable isolates representing all nine currently recognised chlamydial species were screened by immunofluorescence with a cross-reacting chlamydiaphage monoclonal antibody. A novel chlamydiaphage (Chp3) was detected in C. pecorum, a chlamydial species not previously known to carry bacteriophages. Chp3 belongs to the Microviridae, members of this virus family are characterised by circular, single-stranded DNA genomes and small T = 1 icosahedral capsids. Double-stranded replicative form Chp3 DNA was purified from elementary bodies and used as a template to determine the complete genome sequence. The genome of Chp3 is 4,554 base pairs and encodes eight open reading frames organised in the same genome structure as other chlamydiaphages. An unrooted phylogenetic tree was constructed based on the major coat proteins of 11 members of the Microviridae and Chp3. This showed that the Microviridae are clearly divided into two discrete sub-families; those that infect the Enterobacteriaceae e.g. ØX174 and the bacteriophages that infect obligate intracellular bacteria or mollicutes including SpV4 (Spiroplasma melliferum), ØMH2K (Bdellovibrio bacteriovorus) and the chlamydiaphages. Comparative analyses demonstrate that the chlamydiaphages can be further subdivided into two groupings, one represented by Chp2/Chp3 and the other by ØCPG1/ØCPAR39.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center