Send to

Choose Destination
Biochemistry. 2004 Feb 24;43(7):2007-21.

Characterization of the cofactor composition of Escherichia coli biotin synthase.

Author information

Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA.


The cofactor content of in vivo, as-isolated, and reconstituted forms of recombinant Escherichia coli biotin synthase (BioB) has been investigated using the combination of UV-visible absorption, resonance Raman, and Mössbauer spectroscopies along with parallel analytical and activity assays. In contrast to the recent report that E. coli BioB is a pyridoxal phosphate (PLP)-dependent enzyme with intrinsic cysteine desulfurase activity (Ollagnier-deChoudens, S., Mulliez, E., Hewitson, K. S., and Fontecave, M. (2002) Biochemistry 41, 9145-9152), no evidence for PLP binding or for PLP-induced cysteine desulfurase or biotin synthase activity was observed with any of the forms of BioB investigated in this work. The results confirm that BioB contains two distinct Fe-S cluster binding sites. One site accommodates a [2Fe-2S](2+) cluster with partial noncysteinyl ligation that can only be reconstituted in vitro in the presence of O(2). The other site accommodates a [4Fe-4S](2+,+) cluster that binds S-adenosylmethionine (SAM) at a unique Fe site of the [4Fe-4S](2+) cluster and undergoes O(2)-induced degradation via a distinct type of [2Fe-2S](2+) cluster intermediate. In vivo Mössbauer studies show that recombinant BioB in anaerobically grown cells is expressed exclusively in an inactive form containing only the as-isolated [2Fe-2S](2+) cluster and demonstrate that the [2Fe-2S](2+) cluster is not a consequence of overexpressing the recombinant enzyme under aerobic growth conditions. Overall the results clarify the confusion in the literature concerning the Fe-S cluster composition and the in vitro reconstitution and O(2)-induced cluster transformations that are possible for recombinant BioB. In addition, they provide a firm foundation for assessing cluster transformations that occur during turnover and the catalytic competence of the [2Fe-2S](2+) cluster as the immediate S-donor for biotin biosynthesis.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center