Send to

Choose Destination
Tree Physiol. 1995 Nov;15(11):759-64.

Changes in respiration and chemical content during autumnal senescence of Populus tremuloides and Quercus rubra leaves.

Author information

Department of Botany, Erindale College, University of Toronto, Mississauga, Ontario L5L 1C6, Canada.


Changes in respiration rate, chemical content and chemical concentration were measured in leaves of field-grown Populus tremuloides Michx. and Quercus rubra L. trees throughout the growing season and autumnal senescence. Chlorophyll, soluble sugar, N, P, K and Mg contents and concentrations all declined during leaf senescence, whereas Ca content and concentration increased. Leaf dry mass per area declined 24 and 35% in P. tremuloides and Q. rubra, respectively, during senescence. In leaves of both species, respiration rates peaked during leaf expansion in the spring and then declined, as a result of reduced cytochrome-mediated respiration, to reach relatively constant rates by midsummer. In senescing P. tremuloides leaves, respiration rates remained relatively constant until mid-October and then declined rapidly. In senescing Q. rubra leaves, respiration rates increased in late September, as a result of the appearance of residual respiration that could not be reduced by respiratory inhibitors, and then declined quickly in early November. No changes in alternative pathway respiratory activity were observed in leaves of either species during senescence until late autumn when rates declined. Because respiration rates were correlated with both leaf sugar and nitrogen content during leaf senescence, we conclude that respiration rates were maintained or increased during leaf senescence to supply energy for degradation and mobilization of chemical constituents.


Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center