Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Apr 23;279(17):17914-20. Epub 2004 Feb 12.

Conservation of critical functional domains in murine plasminogen activator inhibitor-1.

Author information

  • 1W. M. Keck Center for Transgene Research and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA.


Plasminogen activator inhibitor-1 is the main physiological regulator of tissue-type plasminogen activator in normal plasma. In addition to its critical function in fibrinolysis, plasminogen activator inhibitor-1 has been implicated in roles in other physiological and pathophysiological processes. To investigate structure-function aspects of mouse plasminogen activator inhibitor-1, the recombinant protein was expressed in Escherichia coli and purified. Five variant recombinant murine proteins (R76E, Q123K, R346A, R101A, and Q123K/R101A) were also generated using site-directed mutagenesis. The variant (R346A) was found to be defective in its inhibitory activity against tissue plasminogen activator relative to its wild-type counterpart. Enzyme-linked immunosorbent assay and surface plasmon resonance experiments demonstrated reduced vitronectin-binding affinity of the (Q123K) variant (K(D) = 1800 nm) relative to the wild-type protein (K(D) = 5.4 nm). Kinetic analyses indicated that the (Q123K) variant had a slower association (k(on) = 2.92 x 10(4) m(-1) s(-1)) to, and a faster dissociation from, vitronectin (k(off) = 5.3 x 10(-2) s(-1)), (wild-type k(on) = 1.03 x 10(6) m(-1) s(-1) and k(off) = 5.27 x 10(-3) s(-1)). The Q123K/R101A variant demonstrated an even lower vitronectin-binding ability. Low density lipoprotein receptor-related protein binding was decreased for the (R76E) variant. It was also demonstrated that the plasminogen activator inhibitor-1/vitronectin complex decreased the interaction of plasminogen activator inhibitor-1 with low density lipoprotein receptor-related protein. These results indicate that the complex interactions traditionally associated with different plasminogen activator inhibitor-1 functions apply to the murine system, thus showing a commonality of subtle functions among different species and evolutionary conservation of this protein. Further, this study provides additional evidence that the human hemostasis system can be studied effectively in the mouse, which is a great asset for investigations with gene-altered mice.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center