Send to

Choose Destination
See comment in PubMed Commons below
Redox Rep. 2003;8(5):251-5.

Thioredoxin reductase and glutathione synthesis in Plasmodium falciparum.

Author information

  • 1Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK.


The malaria parasite Plasmodium falciparum is still a major threat to human health in the non-industrialised world mainly due to the increasing incidence of drug resistance. Therefore, there is an urgent need to identify and validate new potential drug targets in the parasite's metabolism that are suitable for the design of new anti-malarial drugs. It is known that infection with P. falciparum leads to increased oxidative stress in red blood cells, implying that the parasite requires efficient antioxidant and redox systems to prevent damage caused by reactive oxygen species. In recent years, it has been shown that P. falciparum possess functional thioredoxin and glutathione systems. Using genetic and chemical tools, it was demonstrated that thioredoxin reductase, the first step of the thioredoxin redox cycle, and gamma-glutamylcysteine synthetase (gamma-GCS), the rate-limiting step of glutathione synthesis, are essential for parasite survival. Indeed, the mRNA levels of gamma-GCS are elevated in parasites that are oxidatively stressed, indicating that glutathione plays an important antioxidant role in P. falciparum. In addition to this antioxidant function, glutathione is important for detoxification processes and is possibly involved in the development of resistance against drugs such as chloroquine.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Taylor & Francis
    Loading ...
    Support Center