Send to

Choose Destination
J Antimicrob Chemother. 1992 Oct;30(4):449-62.

Clinical isolates of Escherichia coli producing TRI beta-lactamases: novel TEM-enzymes conferring resistance to beta-lactamase inhibitors.

Author information

Laboratoire de Bactériologie, CHU Cochin 24, Paris, France.


Two different strains of Escherichia coli exhibiting unusual patterns of resistance to beta-lactam antibiotics were isolated from patients at Cochin Hospital. Both isolates showed a low level of resistance to amoxycillin, ticarcillin and ureidopenicillins but were susceptible to cephalosporins, aztreonam and imipenem; beta-lactamase inhibitors potentiated the activities of the beta-lactams to only a limited extent. All resistance characteristics of the strains were transferable by conjugation to E. coli K12. Resistance was shown to be due to beta-lactamases of pI 5.20 and relative molecular masses of 24,000. The hydrolytic and inhibition profiles of these enzymes were similar to each other but differed from those of broad-spectrum beta-lactamases (TEM-1). The rates of hydrolysis (Vmax) of amoxycillin (c. 200%) were higher than that for TEM-1 (84%). Ticarcillin, ureidopenicillins and cephaloridine were hydrolyzed slowly. However, as for TEM-1, no hydrolysis was observed with cefoxitin, third generation cephalosporins, aztreonam and imipenem. The high Km values demonstrated the poor affinity of these enzymes for their substrates. Unlike TEM-1, they were poorly inhibited by beta-lactamase inhibitors. These two enzymes differed from each other as follows: (i) the concentrations of clavulanic acid required for 50% beta-lactamase inhibition were 31 mumol/L for one enzyme (E-SAL) and 9.4 mumol/L for the other (E-GUER); (ii) p-chloromercuribenzoate was a more active inhibitor of E-SAL then E-GUER. The titration curve method and DNA-DNA hybridization studies demonstrated that both enzymes were structurally related to TEM-1. The novel plasmid-encoded enzymes produced by the two isolates of E. coli appeared to be almost identical and to be derived from TEM-enzymes. On the basis of their presumed phylogeny and their biological properties, we propose that these beta-lactamases be given the generic name TRI (TEM Resistant to beta-lactamase Inhibitors).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center