Send to

Choose Destination
See comment in PubMed Commons below
Tree Physiol. 1996 Sep;16(9):787-93.

Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings.

Author information

Laboratory of Developmental Biology, Institute of Botany, Katholieke Universiteit Leuven, K. Mercierlaan, 92, B-3001 Leuven, Belgium.


We studied carbon and nitrogen allocation in mycorrhizal and non-mycorrhizal Scots pine (Pinus sylvestris L.) seedlings grown in a semi-hydroponic system with nitrogen as the growth limiting factor. Three ectomycorrhizal fungi were compared: one pioneer species (Thelephora terrestris Ehrh.: Fr.) and two late-stage fungi (Suillus bovinus (L.: Fr.) O. Kuntze, and Scleroderma citrinum Pers.). By giving all plants in each treatment the same amount of readily available nitrogen, we ensured that the external mycelium could not increase the total nitrogen content of the plants, thereby guaranteeing that any change in carbon or nitrogen partitioning was a direct effect of the mycorrhizal infection itself. Carbon and nitrogen partitioning were measured at an early and a late stage of mycorrhizal development, and at a low and a high N addition rate. Although mycorrhizal seedlings had a higher net assimilation rate and a higher shoot/root ratio than non-mycorrhizal seedlings, they had a lower rate of shoot growth. The high carbon demand of the mycobionts was consistent with the large biomass of external mycelia and the increased belowground respiration of the mycorrhizal plants. The carbon cost to the host was similar for pioneer and late-stage fungi. Above- and belowground partitioning of nitrogen was also affected by mycorrhizal infection. The external mycelia of Scleroderma citrinum retained 32% of the nitrogen supplied to the plants, thus significantly reducing nitrogen assimilation by the host plants and consequently reducing their growth rate. By contrast, the external mycelia of T. terrestris and Suillus bovinus retained less nitrogen than the mycelia of Scleroderma citrinum, hence we attributed the decreased growth rates of their host plants to a carbon drain rather than a nitrogen deficiency.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center