Format

Send to

Choose Destination
See comment in PubMed Commons below
Development. 1992 Sep;116(1):213-26.

Actin filaments, stereocilia and hair cells of the bird cochlea. VI. How the number and arrangement of stereocilia are determined.

Author information

1
Department of Biology, University of Pennsylvania, Philadelphia 19104.

Abstract

Beginning in 8-day embryos, stereocilia sprout from the apical surface of hair cells apparently at random. As the embryo continues to develop, the number of stereocilia increases. By 10 1/2 days the number is approximately the same as that encountered extending from mature hair cells at the same relative positions in the adult cochlea. Surprisingly, over the next 2-3 days the number of stereocilia continues to increase so that hair cells in a 12-day embryo have 1 1/2 to 2 times as many stereocilia as in adult hair cells. In short, there is an overshoot in stereociliary number. During the same period in which stereocilia are formed (9-12 days) the apical surface of each hair cell is filled with closely packed stereocilia; thus the surface area is proportional to the number of stereocilia present per hair cell, as if these features were coupled. The staircase begins to form in a 10-day embryo, with what will be the tallest row beginning to elongate first and gradually row after row begins to elongate by incorporation of stereocilia at the foot of the staircase. Extracellular connections or tip linkages appear as the stereocilia become incorporated into the staircase. After a diminutive staircase has formed, eg. in a 12-day embryo, the remaining stereocilia located at the foot of the staircase begin to be reabsorbed, a process that occurs during the next few days. We conclude that the hair cell determines the number of stereocilia to form by filling up the available apical surface area with stereocilia and then, by cropping back those that are not stabilized by extracellular linkages, arrives at the appropriate number. Furthermore, the stereociliary pattern, which changes from having a round cross-sectional profile to a rectangular one, is generated by these same linkages which lock the stereocilia into a precise pattern. As this pattern is established, we envision that the stereocilia flow over the apical surface until frozen in place by the formation of the cuticular plate in the apical cell cytoplasm.

PMID:
1483389
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center