Format

Send to

Choose Destination
Protein Eng. 1992 Oct;5(7):693-701.

Site-saturation mutagenesis and three-dimensional modelling of ROB-1 define a substrate binding role of Ser130 in class A beta-lactamases.

Author information

1
Département de Microbiologie, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada.

Abstract

Site-saturation mutagenesis was performed on the class A ROB-1 beta-lactamase at conserved Ser130, which is centrally located in the antibiotic binding site where it can participate in both protein-protein and protein-substrate hydrogen bonding. Mutation Thr130 gave a beta-lactamase hydrolysing penicillins and cephalosporins but which showed a 3-fold lower affinity (Km) for ampicillin and cephalexin, and a 30-fold lower hydrolytic (Vmax) activity for ampicillin. In contrast, the hydrolytic activity for cephalexin was similar to the wild-type for the Thr130 mutation. Mutation Gly130 gave a beta-lactamase hydrolysing only penicillins with an affinity and hydrolysis activity for these compounds approximately 15-fold lower than the wild-type, but no detectable activity against cephalosporins. Mutation Ala130 produced an enzyme capable of hydrolysing penicillins only at a low rate. Modelling the ROB-1 active site was done from the refined 2 A X-ray structure of the homologous Bacillus licheniformis beta-lactamase. Ampicillin and cephalexin were docked into the active site and were energy minimized with the CVFF empirical force field. Dockings were stable only when Ser70 was made anionic and Glu166 was made neutral. Interaction energies and distances were calculated for fully hydrated pre-acylation complexes with the Ser, Thr, Gly and Ala130 enzymes. The catalytic data from all mutations and the computed interactions from modelling confirmed that the Ser130 has a structural as well as a functional role in binding and hydrolysis of penicillins. This highly conserved residue also plays a substrate specificity role by hydrogen binding the carboxylic acid group of cephalosporins more tightly than penicillins.

PMID:
1480622
DOI:
10.1093/protein/5.7.693
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center