Format

Send to

Choose Destination
Int J Pept Protein Res. 1992 Sep-Oct;40(3-4):243-8.

Influence of glycine residues on peptide conformation in membrane environments.

Author information

1
Division of Biochemistry Research, Hospital for Sick Children, Toronto, Ontario, Canada.

Abstract

Transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation, yet their primary sequences are rich in residues known in globular proteins as helix-breakers (Gly) and beta-sheet promoters (Ile, Val, Thr). To examine the specific 2 degrees structure propensities of such residues in membrane environments, we have now designed and synthesized a series of model 20-residue peptides with "guest" hydrophobia segments embedded in "host" N- and C-terminal hydrophilic matrices. Molecular design was based on the prototypical sequence NH2-(Ser-Lys)2-Ala5-Leu6-x7-Ala8-Leu9-y10-Trp 11-Ala12-Leu13-z14-(Lys-Ser)3-OH. The 10-residue hydrophobic mid-segment 5-14 is expected to act as ca. three turns of an alpha-helix. In the present work, we compare the 20-residue peptide having three "helix-forming" Ala residues [x = y = z = Ala (peptide 3A)] to the corresponding peptide 3G (x = y = z = Gly) which contains three "helix-breaking" Gly residues. Trp was inserted to provide a measure of aromatic character typical of TM segments; Ser and Lys enhanced solubility in aqueous media. Circular dichroism studies in water, in a membrane-mimetic [sodium dodecylsulfate (SDS)], medium, and in methanol solutions, demonstrated the exquisite sensitivity of the conformations of these peptides to environment, and proved that despite its backbone flexibility, Gly can be accommodated as readily as Ala into a hydrophobic alpha-helix in a membrane. Nevertheless, the relative stability of Ala- vs. Gly-containing helices emerged in methanol solvent titration and temperature dependence experiments in SDS.(ABSTRACT TRUNCATED AT 250 WORDS).

PMID:
1478781
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center