Send to

Choose Destination
FEMS Microbiol Lett. 2004 Feb 9;231(1):67-71.

MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance.

Author information

Cellular and Molecular Microbiology, Medical Microbiology Department, University of Tübingen, Elfriede-Aulhorn-Str. 6, D-72076 Tübingen, Germany.


Frequently bacteria are exposed to membrane-damaging cationic antimicrobial molecules (CAMs) produced by the host's immune system (defensins, cathelicidins) or by competing microorganisms (bacteriocins). Staphylococcus aureus achieves CAM resistance by modifying anionic phosphatidylglycerol with positively charged L-lysine, resulting in repulsion of the peptides. Inactivation of the novel S. aureus gene, mprF, which is found in many bacterial pathogens, has resulted in the loss of lysylphosphatidylglycerol (L-PG), increased inactivation by CAM-containing neutrophils, and attenuated virulence. We demonstrate here that expression of mprF is sufficient to confer L-PG production in Escherichia coli, which indicates that MprF represents the L-PG synthase. L-PG biosynthesis was studied in vitro and found to be dependent on phosphatidylglycerol and lysyl-tRNA, two putative substrate molecules. Further addition of cadaverin, a competitive inhibitor of the lysyl-tRNA synthetases, or of RNase A abolished L-PG biosynthesis, thereby confirming the involvement of lysyl-tRNA. This study forms the basis for further detailed analyses of L-PG biosynthesis and its role in bacterial infections.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for Wiley
Loading ...
Support Center