Send to

Choose Destination
Gastroenterology. 2004 Feb;126(2):511-9.

Prevention of toxin-induced intestinal ion and fluid secretion by a small-molecule CFTR inhibitor.

Author information

Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, 94143, USA.



The cystic fibrosis transmembrane conductance regulator (CFTR) provides an important apical route for Cl(-) secretion across intestinal epithelia. A thiazolidinone-type CFTR blocker (CFTR(inh)-172) reduced cholera toxin-induced fluid accumulation in mouse intestinal loops. Here, we characterize the efficacy and pharmacodynamics of CFTR(inh)-172 in blocking cAMP and cGMP induced Cl(-)/fluid secretion in rodent and human intestine.


CFTR(inh)-172 inhibited cAMP and cGMP agonist induced short-circuit current by >95% in T84 colonic epithelial cells (K(I) approximately 3 micromol/L) and in mouse and human intestinal sheets (K(I) approximately 9 micromol/L). A single intraperitoneal injection of CFTR(inh)-172 (200 microg) blocked intestinal fluid secretion in a rat closed-loop model by >90% for cholera toxin and >70% for STa Escherichia coli toxin. In mice, CFTR(inh)-172 (20 microg) inhibited cholera toxin-induced intestinal fluid secretion by 90% (persistence t(1/2) approximately 10 hours, K(I) approximately 5 microg) and STa toxin by 75% (K(I) approximately 10 microg). Tissue distribution and pharmacokinetic studies indicated intestinal CFTR(inh)-172 accumulation facilitated by enterohepatic circulation. An oral CFTR(inh)-172 preparation reduced fluid secretion by >90% in a mouse open-loop cholera model.


A small molecule CFTR blocker markedly reduced intestinal ion and fluid secretion caused by cAMP/cGMP-dependent bacterial enterotoxins. CFTR inhibition may thus reduce fluid secretion in infectious secretory diarrheas.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center