Send to

Choose Destination
J Mol Biol. 2004 Feb 13;336(2):509-25.

Outlining folding nuclei in globular proteins.

Author information

Institute of Protein Research, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russian Federation.


Our theoretical approach for prediction of folding/unfolding nuclei in three-dimensional protein structures is based on a search for free energy saddle points on networks of protein unfolding pathways. Under some approximations, this search is performed rapidly by dynamic programming and results in prediction of Phi values, which can be compared with those found experimentally. In this study, we optimize some details of the model (specifically, hydrogen atoms are taken into account in addition to heavy atoms), and compare the theoretically obtained and experimental Phi values (which characterize involvement of residues in folding nuclei) for all 17 proteins, where Phi values are now known for many residues. We show that the model provides good Phi value predictions for proteins whose structures have been determined by X-ray analysis (the average correlation coefficient is 0.65), with a more limited success for proteins whose structures have been determined by NMR techniques only (the average correlation coefficient is 0.34), and that the transition state free energies computed from the same model are in a good anticorrelation with logarithms of experimentally measured folding rates at mid-transition (the correlation coefficient is -0.73).

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center