Send to

Choose Destination
J Mol Biol. 2004 Feb 13;336(2):343-56.

Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic "hot spots".

Author information

RiboTargets Ltd, Granta Park, Abington, CB1 6GB, Cambridge, UK.


The targeting of RNA for the design of novel anti-viral compounds has until now proceeded largely without incorporating direct input from structure-based design methodology, partly because of lack of structural data, and complications arising from substrate flexibility. We propose a paradigm to explain the physical mechanism for ligand-induced refolding of trans-activation response element (TAR RNA) from human immunodeficiency virus 1 (HIV-1). Based upon Poisson-Boltzmann analysis of the TAR structure, as bound by a peptide derived from the transcriptional activator protein, Tat, our hypothesis shows that two specific electrostatic interactions are necessary to stabilise the conformation. This result contradicts the belief that a single argininamide residue is responsible for stabilising the TAR fold, as well as the conventional wisdom that electrostatic interactions with RNA are non-specific or dominated by phosphates. We test this hypothesis by using NMR and computational methods to model the interaction of a series of novel inhibitors of the in vitro RNA-binding activities for a peptide derived from Tat. A subset of inhibitors, including the bis-guanidine compound rbt203 and its analogues, induce a conformation in TAR similar to that brought about by the protein. Comparison of the interactions of two of these ligands with the RNA and structure-activity relationships observed within the compound series, confirm the importance of the two specific electrostatic interactions in the stabilisation of the Tat-bound RNA conformation. This work illustrates how the use of medicinal chemistry and structural analysis can provide a rational basis for prediction of ligand-induced conformational change, a necessary step towards the application of structure-based methods in the design of novel RNA or protein-binding drugs.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center