Format

Send to

Choose Destination
Mol Microbiol. 2004 Jan;51(2):437-46.

Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis.

Author information

1
Research Service, Department of Veterans Affairs, Medical Center, Cleveland, Ohio, USA.

Abstract

In a search for Proteus mirabilis genes that were regulated by cell-to-cell signalling, a lacZ fusion (cmr437::mini-Tn5lacZ) was identified that was repressed 10-fold by a self-produced extracellular signal from wild-type cells. However, the cmr437::mini-Tn5lacZ insertion itself led to a marked reduction in this extracellular repressing signal. The cmr437::mini-Tn5lacZ insertion was mapped to a speA homologue in P. mirabilis. Sequence analysis indicated that a speB homologue was encoded downstream of speA. Products of the SpeA and SpeB enzymes (agmatine and putrescine) were tested for repression of cmr437::lacZ. Agmatine did not have repressing activity. However, putrescine was an effective repressing molecule at concentrations down to 30 microM. A second prominent phenotype of the cmr437 (speA)::mini-Tn5lacZ insertion was a severe defect in swarming motility. This swarming defect was also observed in a strain containing a disruption of the downstream speB gene. Differentiation of the speB mutant to swarmer cells was delayed by two hours relative to wild-type cells. Furthermore, the speB mutant was unable to migrate effectively across agar surfaces and formed very closely spaced swarming rings. Exogenous putrescine restored both the normal timing of swarmer cell differentiation and the ability to migrate to speB mutants.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center