Format

Send to

Choose Destination
See comment in PubMed Commons below
J Comp Neurol. 2004 Feb 16;469(4):475-93.

Altered epithelial density and expansion of bulbar projections of a discrete HSP70 immunoreactive subpopulation of rat olfactory receptor neurons in reconstituting olfactory epithelium following exposure to methyl bromide.

Author information

1
Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA. v-carr@northwestern.edu

Abstract

A previously described subpopulation of rat olfactory receptor neurons, the 2A4(+)ORNs, is 1) distinguished by intense constitutive cytoplasmic immunoreactivity to antibodies to the 70-kD heat shock protein (HSP70); 2) occurs sparsely but consistently through ventral and lateral olfactory epithelium (OE); and 3) projects to just two to three consistently located glomeruli in each olfactory bulb (OB) (Carr et al. [1994] J Comp Neurol 348:150-160). Immunoreactivity appears not to be stress-related. To examine the persistence of these features following destruction and reconstitution of the OE, rats were subjected to methyl bromide-induced OE lesion (Schwob et al. [1995] J Comp Neurol 59:15-37; Schwob et al. [1999] J Comp Neurol 412:439-457] and their OE and OBs examined with antibodies to HSP70 6-10.5 weeks postlesion. Lesioned OE showed significantly increased 2A4(+)ORN densities but no alteration of 2A4(+)ORN zonal distribution. The OBs of lesioned animals showed marked expansions of 2A4(+)ORN bulbar projections, with 2-15-fold increases in numbers of glomeruli showing 2A4(+)axons, and projection expansions were greater in animals maintained on chronic food restriction prior to lesioning. Examination of archival 5-month post-MeBr lesion material indicates that altered projection patterns are maintained.

PMID:
14755530
DOI:
10.1002/cne.11020
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center