Send to

Choose Destination
Environ Sci Technol. 2004 Jan 15;38(2):503-7.

Structure effect on the interaction of phenylurea herbicides with model biomembrane as an environmental mobility parameter.

Author information

INCA, Unit Catania 5, c/o Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, 95127 Catania, Italy.


During recent years, intensive use of herbicides has raised increasing concern mainly due to their massive pollution of the environment. As these herbicides are directly or indirectly toxic to a wide range of organisms, their potential for contaminating soil, surface water, and groundwater makes these xenobiotics of special interest from a health and environmental point of view. Knowledge of the mechanisms by which they exert their toxic effects is becoming a need. Because of the herbicides' lipophilicity, a possible site of interaction in the cell is represented by biomembranes. The interaction of four herbicides, difenoxuron, diuron, linuron, and metoxuron, with model membranes constituted of dimyristoylphosphatidylcholine multilamellar vesicles was investigated by the differential scanning calorimetry technique. The aim was to study the effects exerted by an increasing amount of the examined compounds on thermotropic behavior of the model phospholipid membranes and to correlate the obtained results with structural features of the herbicides due to their environmental mobility. Among the herbicides studied, linuron is the most effective in perturbing the ordinate structure of vesicles forming phospholipids, whereas metoxuron is the least effective and the others exert an intermediate effect. Linuron exerts its effect both on the transition temperature of the gel to the liquid crystalline phase and on the enthalpy change. Difenoxuron, diuron, and metoxuron cause a change in the transition temperature but have an insignificant effect on the enthalpy change. The calorimetric results, correlated with the structural features of the herbicides, are consistent with their partition coefficient, log K(ow), suggesting that the more hydrophobic compound character causes a greater liposolubility and consequential cellular absorption with more effectiveness on the membrane order.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center