Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2004 Feb;207(Pt 5):777-86.

Nitrogen metabolism in the African lungfish (Protopterus dolloi) aestivating in a mucus cocoon on land.

Author information

Natural Sciences, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore.


This study aimed to elucidate the strategies adopted by the African slender lungfish, Protopterus dolloi, to ameliorate the toxicity of ammonia during short (6 days) or long (40 days) periods of aestivation in a layer of dried mucus in open air in the laboratory. Despite decreases in rates of ammonia and urea excretion, the ammonia content in the muscle, liver, brain and gut of P. dolloi remained unchanged after 6 days of aestivation compared with the control fasted for 6 days. For specimens aestivated for 40 days, the ammonia contents in the muscle, liver and gut were significantly lower than those of the control fasted for 40 days, which suggests a decrease in the rate of ammonia production. In addition, there were significant increases in contents of alanine, aspartate and glutamate in the muscle, which suggests decreases in their catabolism. During the first 6 days and the last 34 days of aestivation, the rate of ammonia production was reduced to 26% and 28%, respectively, of the control rate (6.83 micromol day(-1) g(-1) on day 0). During the first 6 days and the next 34 days of aestivation, the averaged urea synthesis rate was 2.39-fold and 3.8-fold, respectively, greater than the value of 0.25 micromol day(-1) g(-1) for the day 0 control kept in water. No induction of activities of the ornithine-urea cycle (OUC) enzymes was observed in specimens aestivated for 6 days, because the suppression of ammonia production led to a light demand on the OUC capacity. For specimens aestivated for 40 days, the activities of carbamoyl phosphate synthetase, ornithine transcarbamylase and argininosuccinate synthetase + lyase were significantly greater than those of the control fasted for 40 days. This is in agreement with the observation that the rate of urea synthesis in the last 34 days was greater than that in the first 6 days of aestivation. P. dolloi aestivated in a thin layer of dried mucus in open air with high O(2) tension throughout the 40 days of aestivation, which could be the reason why it was able to sustain a high rate of urea synthesis despite this being an energy-intensive process. Our results indicate that a reduction in ammonia production and decreases in hepatic arginine and cranial tryptophan contents are important facets of aestivation in P. dolloi.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center