Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2004 Feb;134(2):849-57. Epub 2004 Jan 22.

Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed.

Author information

1
State Key Laboratory of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.

Abstract

Calluses from two ecotypes of reed (Phragmites communis Trin.) plant (dune reed [DR] and swamp reed [SR]), which show different sensitivity to salinity, were used to study plant adaptations to salt stress. Under 200 mm NaCl treatment, the sodium (Na) percentage decreased, but the calcium percentage and the potassium (K) to Na ratio increased in the DR callus, whereas an opposite changing pattern was observed in the SR callus. Application of sodium nitroprusside (SNP), as a nitric oxide (NO) donor, revealed that NO affected element ratios in both DR and SR calluses in a concentration-dependent manner. N(omega)-nitro-l-arginine (an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (a specific NO scavenger) counteracted NO effect by increasing the Na percentage, decreasing the calcium percentage and the K to Na ratio. The increased activity of plasma membrane (PM) H(+)-ATPase caused by NaCl treatment in the DR callus was reversed by treatment with N(omega)-nitro-l-arginine and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde. Western-blot analysis demonstrated that NO stimulated the expression of PM H(+)-ATPase in both DR and SR calluses. These results indicate that NO serves as a signal in inducing salt resistance by increasing the K to Na ratio, which is dependent on the increased PM H(+)-ATPase activity.

PMID:
14739346
PMCID:
PMC344559
DOI:
10.1104/pp.103.030023
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center