Format

Send to

Choose Destination
J Cosmet Sci. 2003 Nov-Dec;54(6):537-50.

Improving the aqueous solubility of triclosan by solubilization, complexation, and in situ salt formation.

Author information

1
School of Pharmacy, Potchefstroom University for Christian Higher Education, Potchefstroom 2520, South Africa.

Abstract

Triclosan, an antimicrobial, although widely incorporated into many skin care products, toothpastes, and liquid soaps, presents formulation difficulties because it is practically insoluble in water. The objective of this study was to improve the aqueous solubility of triclosan through solubilization, complexation, and salt formation. The solubility of triclosan in distilled water and in phosphate buffers (pH 7.4) was determined at 30 degrees C. The order of solubilizing performance of the solubilizers was: N-methylglucamine> or =L-arginine>sodium lauryl sulfate>beta-cyclodextrin> or =hydroxypropyl-beta-cyclodextrin>ethanolamine>sodium benzoate>sodium methyl 4-hydroxybenzoate>triethanolamine> or =diethanolamine. These solubilizers increased the solubility of triclosan from 80- to 6000-fold. Micellar solubilization and the formation of either salts or complexes are postulated as possible mechanisms for the increase in the solubility of triclosan by the surfactant sodium lauryl sulphate, the cyclic sugar derivatives beta-cyclodextrin and 2-hydropropyl-beta-cyclodextrin, the amino acid L-arginine, and the amino sugar alcohol N-methylglucamine. Furthermore, although the bacteriostatic efficacy of triclosan was significantly increased when solubilized with N-methylglucamine, L-arginine, and ethanolamine, increased solubilization did not increase the effectiveness of triclosan for all solubilizers tested.

PMID:
14730370
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center