Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2003 Dec 30;1618(2):120-32.

Proton pump-driven cutaneous chloride uptake in anuran amphibia.

Author information

1
August Krogh Institute, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen Ø, Denmark.

Abstract

Krogh introduced the concept of active ion uptake across surface epithelia of freshwater animals, and proved independent transports of Na(+) and Cl(-) in anuran skin and fish gill. He suggested that the fluxes of Na(+) and Cl(-) involve exchanges with ions of similar charge. In the so-called Krogh model, Cl(-)/HCO(3)(-) and Na(+)/H(+) antiporters are located in the apical membrane of the osmoregulatory epithelium. More recent studies have shown that H(+) excretion in anuran skin is due to a V-ATPase in mitochondria-rich (MR) cells. The pump has been localized by immunostaining and H(+) fluxes estimated by pH-stat titration and mathematical modelling of pH-profiles in the unstirred layer on the external side of the epithelium. H(+) secretion is voltage-dependent, sensitive to carbonic-anhydrase inhibitors, and rheogenic with a charge/ion-flux ratio of unity. Cl(-) uptake from freshwater is saturating, voltage independent, and sensitive to DIDS and carbonic-anhydrase inhibitors. Depending on anuran species and probably on acid/base balance of the animal, apical exit of protons is coupled to an exchange of Cl(-) with base (HCO(3)(-)) either in the apical membrane (gamma-type of MR cell) or in the basolateral membrane (alpha-type MR cell). The gamma-cell model accounts for the rheogenic active uptake of Cl(-) observed in several anuran species. There is indirect evidence also for non-rheogenic active uptake accomplished by a beta-type MR cell with apical base secretion and basolateral proton pumping. Several studies have indicated that the transport modes of MR cells are regulated via ion- and acid/base balance of the animal, but the signalling mechanisms have not been investigated. Estimates of energy consumption by the H(+)-ATPase and the Na(+)/K(+)-ATPase indicate that the gamma-cell accomplishes uptake of NaCl in normal and diluted freshwater. Under common freshwater conditions with serosa-positive or zero V(t), the K(+) conductance of the basolateral membrane would have to maintain the inward driving force for Na(+) uptake across the apical membrane. With the K(+) equilibrium potential across the basolateral membrane estimated to -105 mV, this would apply to external Na(+) concentrations down to 40-120 micromol/l. NaCl uptake from concentrations down to 10 micromol/l, as observed by Krogh, presupposes that the H(+) pump hyperpolarizes the apical membrane, which would then have to be associated with serosa-negative V(t). In diluted freshwater, exchange of cellular HCO(3)(-) with external Cl(-) seems to be possible only if the proton pump has the additional function of keeping the external concentration of HCO(3)(-) low. Quantitative considerations also lead to the conclusion that with the above extreme demand, at physiological intracellular pH of 7.2, the influx of Cl(-) via the apical antiporter and the passive exit of Cl(-) via basolateral channels would be possible within a common range of intracellular Cl(-) concentrations.

PMID:
14729149
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center