Send to

Choose Destination
Biochem Biophys Res Commun. 1992 Dec 15;189(2):979-85.

Age-associated oxygen damage and mutations in mitochondrial DNA in human hearts.

Author information

Department of Biomedical Chemistry, Faculty of Medicine, University of Nagoya, Japan.


Some mutations in mitochondrial DNA (mtDNA) causing a number of neuromuscular diseases are suggested to arise spontaneously during the life of an individual. To substantiate the extent and the rate of these somatic mutations, mtDNA specimens from post-mortem human heart muscles of subjects in differing age groups were hydrolyzed. 8-Hydroxy-deoxyguanosine (8-OH-dG), a hydroxyl-radical adduct of deoxyguanosine, in mtDNA, was quantitatively determined using a micro high-performance liquid chromatography/mass spectrometry system. In each specimen, the mtDNA with a 7.4 kilo base-pair deletion was quantified by the kinetic polymerase chain reaction method. In association with age, the 8-OH-dG content accumulated exponentially up to 1.5% with a correlative increase in the content of the deleted mtDNA up to 7%. Clear correlation between the 8-OH-dG content in mtDNA and the population of mtDNA with a deletion (r = 0.93, P < 0.01) gives insight into the mechanism for the generation of a large deletion. These results indicate that accumulation of somatically acquired oxygen damage together with age-associated mutations in mtDNA which lead to bioenergetic deficiency and the heart muscle weakness are inevitable in human life.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center