Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2004 Apr;309(1):208-15. Epub 2004 Jan 12.

Imatinib-mesylate blocks recombinant T-type calcium channels expressed in human embryonic kidney-293 cells by a protein tyrosine kinase-independent mechanism.

Author information

1
Division of Pharmacology, Department of Neuroscience, Federico II University of Naples, Via Pansini no. 5, 80131 Naples, Italy.

Abstract

The 2-phenylaminopyrimidine derivative imatinib-mesylate, a powerful protein tyrosine kinase (PTK) inhibitor that targets abl, c-kit, and the platelet-derived growth factor receptors, is rapidly gaining a relevant role in the treatment of several types of neoplasms. Because first generation PTK inhibitors affect the activity of a large number of voltage-dependent ion channels, the present study explored the possibility that imatinib-mesylate could interfere with the activity of T-type channels, a class of voltage-dependent Ca2+ channels that take part in the chain of events elicited by PTK activation. The effect of the drug on T-type channel activity was examined using the whole-cell patch-clamp technique with Ba2+ (10 mM) as the permeant ion in human embryonic kidney-293 cells, stably expressing the rat Ca(V)3.3 channels. Imatinib-mesylate concentrations, ranging from 30 to 300 microM, reversibly decreased Ca(V)3.3 current amplitude with an IC(50) value of 56.9 microM. By contrast, when imatinib-mesylate (500 microM) was intracellularly dialyzed with the pipette solution, no reduction in Ba2+ current density was observed. The 2-phenylaminopyrimidine derivative modified neither the voltage dependence of activation nor the steady-state inactivation of Ca(V)3.3 channels. The decrease in extracellular Ba2+ concentration from 10 to 2 mM and the substitution of Ca2+ for Ba2+ increased the extent of 30 microM imatinib-mesylate-induced percentage of channel blockade from 25.9 +/- 2.4 to 36.3 +/- 0.9% in 2 mM Ba2+ and 44.2 +/- 2.3% in 2 mM Ca2+. In conclusion, imatinib-mesylate blocked the cloned Ca(V)3.3 channels by a PTK-independent mechanism. Specifically, the drug did not affect the activation or the inactivation of the channel but interfered with the ion permeation process.

PMID:
14718589
DOI:
10.1124/jpet.103.061184
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center