Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Mar 26;279(13):12479-83. Epub 2004 Jan 12.

Histidine 167 is the phosphate acceptor in glucose-6-phosphatase-beta forming a phosphohistidine enzyme intermediate during catalysis.

Author information

  • 1Section on Cellular Differentiation, Heritable Disorders Branch, National Institute of Child Health & Human Development, National Institutes of Health, Building 10 Rm. 9S241, Bethesda, MD 20892, USA.


The glucose-6-phosphatase (Glc-6-Pase) family comprises two active endoplasmic reticulum (ER)-associated isozymes: the liver/kidney/intestine Glc-6-Pase-alpha and the ubiquitous Glc-6-Pase-beta. Both share similar kinetic properties. Sequence alignments predict the two proteins are structurally similar. During glucose 6-phosphate (Glc-6-P) hydrolysis, Glc-6-Pase-alpha, a nine-transmembrane domain protein, forms a covalently bound phosphoryl enzyme intermediate through His(176), which lies on the lumenal side of the ER membrane. We showed that Glc-6-Pase-beta is also a nine-transmembrane domain protein that forms a covalently bound phosphoryl enzyme intermediate during Glc-6-P hydrolysis. However, the intermediate was not detectable in Glc-6-Pase-beta active site mutants R79A, H114A, and H167A. Using [(32)P]Glc-6-P coupled with cyanogen bromide mapping, we demonstrated that the phosphate acceptor in Glc-6-Pase-beta is His(167) and that it lies inside the ER lumen with the active site residues, Arg(79) and His(114). Therefore Glc-6-Pase-alpha and Glc-6-Pase-beta share a similar active site structure, topology, and mechanism of action.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center