Send to

Choose Destination
Anal Biochem. 2003 Nov 1;322(1):33-9.

A fluorescence-based high-throughput screening assay for inhibitors of human immunodeficiency virus-1 reverse transcriptase-associated ribonuclease H activity.

Author information

Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.


A fluorescence resonance energy transfer assay readily applicable to 96-well and 384-well microplate formats with robotic operation was developed to enable high-throughput screening for inhibitors of human immunodeficiency virus-1 (HIV-1) reverse transcriptase (RT)-associated RNase H activity, an underexplored target for antiretroviral development. The assay substrate is an 18-nucleotide 3'-fluorescein-labeled RNA annealed to a complementary 18-nucleotide 5'-Dabcyl-modified DNA. The intact duplex has an extremely low background fluorescent signal and provides up to 50-fold fluorescent signal enhancement following hydrolysis. The size and sequence of the duplex are such that HIV-1 RT-RNase H cuts the RNA strand close to the 3' end. The fluorescein-labeled ribonucleotide fragment readily dissociates from the complementary DNA at room temperature with immediate generation of a fluorescent signal. This assay is rapid, inexpensive, and robust, providing Z' factors of 0.8 and coefficients of variation of about 5%. The assay can be carried out both in real-time (continuous) and in "quench" modes; the latter requires only two addition steps with no washing and is thus suitable for robotic operation. Several chemical libraries totaling more than 106,000 compounds were screened with this assay in approximately 1 month.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center