Format

Send to

Choose Destination
See comment in PubMed Commons below
Hum Factors. 2003 Fall;45(3):495-503.

Traffic signal color recognition is a problem for both protan and deutan color-vision deficients.

Author information

1
School of Optometry, Queensland University of Technology, Brisbane, Australia. d.atchison@qut.edu.au

Abstract

We investigated the effect of color-vision deficiency on reaction times and accuracy of identification of traffic light signals. Participants were 20 color-normal and 49 color-deficient males, the latter divided into subgroups of different severity and type. Participants performed a tracking task. At random intervals, stimuli simulating standard traffic light signals were presented against a white background at 5 degrees to right or left. Participants identified stimulus color (red/yellow/green) by pressing an appropriate response button. Mean response times for color normals were 525, 410, and 450 ms for red, yellow, and green lights, respectively. For color deficients, response times to red lights increased with increase in severity of color deficiency, with deutans performing worse than protans of similar severity: response times of deuteranopes and protanopes were 53% and 35% longer than those of color normals. A similar pattern occurred for yellow lights, with deuteranopes and protanopes having increased response times of 85% and 53%, respectively. For green lights, response times of all groups were similar. Error rates showed patterns similar to those of response times. Contrary to previous studies, deutans performed much worse than protans of similar severity. Actual or potential applications of this research include traffic signal design and driver licensing.

PMID:
14702998
DOI:
10.1518/hfes.45.3.495.27247
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center