Send to

Choose Destination
Cell. 2003 Dec 26;115(7):813-23.

Cell cycle regulated transport controlled by alterations in the nuclear pore complex.

Author information

Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.


Eukaryotic cells have developed mechanisms for regulating the nuclear transport of macromolecules that control various cellular events including movement through defined stages of the cell cycle. In yeast cells, where the nuclear envelope remains intact throughout the cell cycle, these transport regulatory mechanisms must also function during mitosis. We have uncovered a mechanism for regulating transport that is controlled by M phase specific molecular rearrangements in the nuclear pore complex (NPC). These changes allow a transport inhibitory nucleoporin, Nup53p, to bind the karyopherin Kap121p specifically during mitosis, slowing its movement through the NPC and inducing cargo release. Yeast strains that possess defects in the function of Kap121p or the fidelity of the inhibitory pathway are delayed in mitosis. We propose that fluctuations in Kap121p transport mediated by the NPC contribute to controlling the subcellular distribution of molecules that direct progression through mitosis.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center