Format

Send to

Choose Destination
See comment in PubMed Commons below
Br J Pharmacol. 2004 Jan;141(2):223-32. Epub 2003 Dec 22.

Coupling of boswellic acid-induced Ca2+ mobilisation and MAPK activation to lipid metabolism and peroxide formation in human leucocytes.

Author information

1
Institute of Pharmaceutical Chemistry, University of Frankfurt, Marie-Curie Strasse 9, Frankfurt D-60439, Germany.

Abstract

1. We have previously shown that 11-keto boswellic acids (11-keto-BAs), the active principles of Boswellia serrata gum resins, activate p38 MAPK and p42/44(MAPK) and stimulate Ca(2+) mobilisation in human polymorphonuclear leucocytes (PMNL). 2. In this study, we attempted to connect the activation of MAPK and mobilisation of Ca(2+) to functional responses of PMNL, including the formation of reactive oxygen species (ROS), release of arachidonic acid (AA), and leukotriene (LT) biosynthesis. 3. We found that, in PMNL, 11-keto-BAs stimulate the formation of ROS and cause release of AA as well as its transformation to LTs via 5-lipoxygenase. 4. Based on inhibitor studies, 11-keto-BA-induced ROS formation is Ca(2+)-dependent and is mediated by NADPH oxidase involving PI 3-K and p42/44(MAPK) signalling pathways. Also, the release of AA depends on Ca(2+) and p42/44(MAPK), whereas the pathways stimulating 5-LO are not readily apparent. 5. Pertussis toxin, which inactivates G(i/0) protein subunits, prevents MAPK activation and Ca(2+) mobilisation induced by 11-keto-BAs, implying the involvement of a G(i/0) protein in BA signalling. 6. Expanding studies on differentiated haematopoietic cell lines (HL60, Mono Mac 6, BL41-E-95-A) demonstrate that the ability of BAs to activate MAPK and to mobilise Ca(2+) may depend on the cell type or the differentiation status. 7. In summary, we conclude that BAs act via G(i/0) protein(s) stimulating signalling pathways that control functional leucocyte responses, in a similar way as chemoattractants, that is, N-formyl-methionyl-leucyl-phenylalanine or platelet-activating factor.

PMID:
14691050
PMCID:
PMC1574191
DOI:
10.1038/sj.bjp.0705604
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Support Center