Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biomed Mater Res B Appl Biomater. 2004 Jan 15;68(1):69-74.

Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone.

Author information

1
Brain Korea 21 Project for Medical Sciences, Yonsei University, Korea.

Abstract

The purpose of this study is to determine the efficacy of bioactive calcium phosphate obtained from porcine cancellous bone for the treatment of bone defects and nonunion. Porcine cancellous bone blocks were heat treated at 1300 degrees C for 2 h. The chemical composition, calcium-to-phosphate ratio, and microstructure of the porcine bone blocks were examined. For in vivo implantation, bone defects were created on the anteromedial aspect of the proximal tibia in seven beagle dogs and the xenograft bone blocks were placed into these defects. Plain radiographs were taken at 2-week intervals for roentgenographic evaluation. At 12 weeks, the specimens were stained with hematoxylin and eosin (H&E). The composition and morphology of heat-treated porcine cancellous bone were found to be similar to heat-treated human cancellous bone. Radiographs showed union between the host bone/bone-block interfaces. At 12 weeks, uniform and substantial new bone formation was observed. It is concluded that heat-treated porcine cancellous bone demonstrated effective osteoconductivity. This high-temperature heat-treatment technique has several advantages, including decreased risk of disease transmission and immunoreactivity, while also offering excellent biocompatibility.

PMID:
14689498
DOI:
10.1002/jbm.b.10084
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center