Format

Send to

Choose Destination
J Comp Physiol B. 2004 Mar;174(2):181-8. Epub 2003 Dec 16.

L-glucose absorption in house sparrows (Passer domesticus) is nonmediated.

Author information

1
Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Abstract

We previously demonstrated in intact house sparrows substantial absorption in vivo of L-glucose, the stereoisomer of D-glucose that is assumed not to interact with the intestine's D-glucose transporter. Results of some studies challenge this assumption for other species. Therefore, we tested it in vitro and in vivo, based on the principle that if absorption of a compound (L-glucose) is mediated, then absorption of its tracer will be competitively inhibited by high concentrations of either the compound itself or other compounds (e.g., D-glucose) whose absorption is mediated by the same mechanism. An alternative hypothesis that L-glucose absorption is primarily paracellular predicts that its absorption in vivo will be increased (not decreased) in the presence of D-glucose, because the permeability of this pathway is supposedly enhanced when Na(+)-coupled glucose absorption occurs. First, using intact tissue in vitro, we found that uptake of tracer-radiolabeled L-glucose was not significantly inhibited by high concentrations (100 mM) of either L-glucose or 3-O-methyl-D-glucose, a non-metabolizable but actively transported D-glucose analogue. Second, using intact house sparrows, we found that fractional absorption of the L-glucose tracer was significantly increased, not reduced, when gavaged along with 200 mM 3-O-methyl-D-glucose. This result was confirmed in another experiment where L-glucose fractional absorption was significantly higher in the presence vs. absence of food in the gut. The greater absorption was apparently not due simply to longer retention time of digesta, because no significant difference was found among retention times. Our results are consistent with the idea that L-glucose is absorbed in a non-mediated fashion, largely via the paracellular pathway in vivo.

PMID:
14676966
DOI:
10.1007/s00360-003-0403-3
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center