Send to

Choose Destination
Oncogene. 2004 Mar 4;23(9):1789-800.

Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene.

Author information

Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.


Melanoma differentiation associated gene-5 (mda-5) was identified by subtraction hybridization as a novel upregulated gene in HO-1 human melanoma cells induced to terminally differentiate by treatment with IFN-beta+MEZ. Considering its unique structure, consisting of a caspase recruitment domain (CARD) and an RNA helicase domain, it was hypothesized that mda-5 contributes to apoptosis occurring during terminal differentiation. We have currently examined the expression pattern of mda-5 in normal tissues, during induction of terminal differentiation and after treatment with type I IFNs. In addition, we have defined its genomic structure and chromosomal location. IFN-beta, a type I IFN, induces mda-5 expression in a biphasic and dose-dependent manner. Based on its temporal kinetics of induction and lack of requirement for prior protein synthesis mda-5 is an early type I IFN-responsive gene. The level of mda-5 mRNA is in low abundance in normal tissues, whereas expression is induced in a spectrum of normal and cancer cells by IFN-beta. Expression of mda-5 by means of a replication incompetent adenovirus, Ad.mda-5, induces apoptosis in HO-1 cells as confirmed by morphologic, biochemical and molecular assays. Additionally, the combination of Ad.mda-5+MEZ further augments apoptosis as observed in Ad.null or uninfected HO-1 cells induced to terminally differentiate by treatment with IFN-beta+MEZ. The mda-5 gene is located on human chromosome 2q24 and consists of 16 exons, without pseudogenes, and is conserved in the mouse genome. Present data documents that mda-5 is a novel type I IFN-inducible gene, which may contribute to apoptosis induction during terminal differentiation and during IFN treatment. The conserved genomic and protein structure of mda-5 in human and mouse will permit analysis of the evolution and developmental aspects of this gene.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center