Format

Send to

Choose Destination
See comment in PubMed Commons below
Endocrinology. 2004 Apr;145(4):1668-77. Epub 2003 Dec 11.

Dehydroepiandrosterone metabolism by 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase in adult zebra finch brain: sex difference and rapid effect of stress.

Author information

  • 1Department of Physiological Science, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles 90095-1527, USA. kiran@physci.ucla.edu

Abstract

Dehydroepiandrosterone (DHEA) is a precursor to sex steroids such as androstenedione (AE), testosterone (T), and estrogens. DHEA has potent effects on brain and behavior, although the mechanisms remain unclear. One possible mechanism of action is that DHEA is converted within the brain to sex steroids. 3beta-Hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD) catalyzes the conversion of DHEA to AE. AE can then be converted to T and estrogen within the brain. We test the hypothesis that 3beta-HSD is expressed in the adult brain in a region- and sex-specific manner using the zebra finch (Taeniopygia guttata), a songbird with robust sex differences in song behavior and telencephalic song nuclei. In zebra finch brain, DHEA is converted by 3beta-HSD to AE and subsequently to estrogens and 5alpha- and 5beta-reduced androgens. 3beta-HSD activity is highest in the diencephalon and telencephalon. In animals killed within 2-3 min of disturbance, baseline 3beta-HSD activity in portions of the telencephalon is higher in females than males. Acute restraint stress (10 min) decreases 3beta-HSD activity in females but not in males, and in stressed animals, telencephalic 3beta-HSD activity is greater in males than in females. Thus, the baseline sex difference is rapidly reversed by stress. To our knowledge, this is the first demonstration of 1) brain region differences in DHEA metabolism by 3beta-HSD, 2) rapid modulation of 3beta-HSD activity, and 3) sex differences in brain 3beta-HSD and regulation by stress. Songbirds are good animal models for studying the regulation and functions of DHEA and neurosteroids in the nervous system.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk