Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2003 Dec 8;1607(2-3):153-60.

The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells.

Author information

  • 1Biological Faculty, Moscow State University, Vorobyevi Gori 119899, Russia.


Chlamydomonas reinhardtii cultures, deprived of inorganic sulfur, undergo dramatic changes during adaptation to the nutrient stress [Biotechnol. Bioeng. 78 (2002) 731]. When the capacity for Photosystem II (PSII) O(2) evolution decreases below that of respiration, the culture becomes anaerobic [Plant Physiol. 122 (2000) 127]. We demonstrate that (a) the photochemical activity of PSII, monitored by in situ fluorescence, also decreases slowly during the aerobic period; (b) at the exact time of anaerobiosis, the remaining PSII activity is rapidly down regulated; and (c) electron transfer from PSII to PSI abruptly decreases at that point. Shortly thereafter, the PSII photochemical activity is partially restored, and H(2) production starts. Hydrogen production, which lasts for 3-4 days, is catalyzed by an anaerobically induced, reversible hydrogenase. While most of the reductants used directly for H(2) gas photoproduction come from water, the remaining electrons must come from endogenous substrate degradation through the NAD(P)H plastoquinone (PQ) oxido-reductase pathway. We propose that the induced hydrogenase activity provides a sink for electrons in the absence of other alternative pathways, and its operation allows the partial oxidation of intermediate photosynthetic carriers, including the PQ pool, between PSII and PSI. We conclude that the reduced state of this pool, which controls PSII photochemical activity, is one of the main factors regulating H(2) production under sulfur-deprived conditions. Residual O(2) evolved under these conditions is probably consumed mostly by the aerobic oxidation of storage products linked to mitochondrial respiratory processes involving both the cytochrome oxidase and the alternative oxidase. These functions maintain the intracellular anaerobic conditions required to keep the hydrogenase enzyme in the active, induced form.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center