Format

Send to

Choose Destination
J Med Chem. 2003 Dec 18;46(26):5674-90.

Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design.

Author information

1
Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, 600 S. 43rd Street, Philadelphia, PA 19104, USA. r.zauhar@usip.edu

Abstract

A unifying principle of rational drug design is the use of either shape similarity or complementarity to identify compounds expected to be active against a given target. Shape similarity is the underlying foundation of ligand-based methods, which seek compounds with structure similar to known actives, while shape complementarity is the basis of most receptor-based design, where the goal is to identify compounds complementary in shape to a given receptor. These approaches can be extended to include molecular descriptors in addition to shape, such as lipophilicity or electrostatic potential. Here we introduce a new technique, which we call shape signatures, for describing the shape of ligand molecules and of receptor sites. The method uses a technique akin to ray-tracing to explore the volume enclosed by a ligand molecule, or the volume exterior to the active site of a protein. Probability distributions are derived from the ray-trace, and can be based solely on the geometry of the reflecting ray, or may include joint dependence on properties, such as the molecular electrostatic potential, computed over the surface. Our shape signatures are just these probability distributions, stored as histograms. They converge rapidly with the length of the ray-trace, are independent of molecular orientation, and can be compared quickly using simple metrics. Shape signatures can be used to test for both shape similarity between compounds and for shape complementarity between compounds and receptors and thus can be applied to problems in both ligand- and receptor-based molecular design. We present results for comparisons between small molecules of biological interest and the NCI Database using shape signatures under two different metrics. Our results show that the method can reliably extract compounds of shape (and polarity) similar to the query molecules. We also present initial results for a receptor-based strategy using shape signatures, with application to the design of new inhibitors predicted to be active against HIV protease.

PMID:
14667221
DOI:
10.1021/jm030242k
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center