Send to

Choose Destination
See comment in PubMed Commons below
Exp Hematol. 2003 Dec;31(12):1170-81.

SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide.

Author information

The Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.


The phosphatidylinositol-3 kinase (PI3K) pathway plays a central role in regulating numerous biologic processes, including survival, adhesion, migration, metabolic activity, proliferation, differentiation, and end cell activation through the generation of the potent second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P(3)). To ensure that activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed 54-kDa tumor suppressor PTEN hydrolyzes PI-3,4,5-P(3) to PI-4,5-P(2), whereas the 145-kDa hematopoietic-restricted SH2-containing inositol 5'-phosphatase SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP sSHIP, and the more widely expressed 150-kDa SHIP2 break it down to PI-3,4-P(2). In this review, we focus on the properties of these phospholipid phosphatases and summarize recent data showing that the activities of these negative regulators often are modulated by simply altering their protein levels. We also highlight the critical role that SHIP plays in lipopolysaccharide-induced macrophage activation and in endotoxin tolerance.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center