Send to

Choose Destination
Pharm Res. 2003 Nov;20(11):1752-9.

The use of clinical trial simulation to support dose selection: application to development of a new treatment for chronic neuropathic pain.

Author information

Clinical Pharmacokinetics and Pharmacodynamics, Pfizer Global Research and Development, Ann Arbor, MI, USA.



Pregabalin is being evaluated for the treatment of neuropathic pain. Two phase 2 studies were simulated to determine how precisely the dose that caused a one-point reduction in the pain score could be estimated. The likelihood of demonstrating at least a one-point change for each available dose strength was also calculated.


A pharmacokinetic-pharmacodynamic (PK/PD) model relating pain relief to gabapentin plasma concentrations was derived from a phase 3 study. The PK component of the model was modified to reflect pregabalin PK. The PD component was modified by scaling the gabapentin concentration-effect relationship to reflect pregabalin potency, which was based on preclincal data. Uncertainty about the potency difference and the steepness of the concentration-response slope necessitated simulating a distribution of outcomes for a series of PK/PD models.


Analysis of the simulated data suggested that after accounting for the uncertainty, there was an 80% chance that the dose defining the clinical feature was within 45% of the true value. The likelihood of estimating a dose that was within an acceptable predefined precision range relative to a known value approximated 60%. The minimum dose that should be studied to have a reasonable chance of estimating the dose that caused a one-point change was 300 mg.


Doses that identify predefined response may be imprecisely estimated, suggesting that replication of a similar outcome may be elusive in a confirmatory study. Quantification of this precision provides a rationale for phase 2 trial design and dose selection for confirmatory studies.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center