Send to

Choose Destination
Planta. 2004 Mar;218(5):833-42. Epub 2003 Dec 6.

Biosynthesis of pectic galactan by membrane-bound galactosyltransferase from soybean ( Glycine max Merr) seedlings.

Author information

Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Saitama 338-8570, Japan.


We investigated the properties of a galactosyltransferase (GalT) that is involved in the synthesis of beta-(1-->4)-galactan side chains of pectins. A membrane preparation of etiolated 6-day-old soybean ( Glycine max Merr.) hypocotyls transferred [(14)C]Gal from UDP-[(14)C]Gal into intact and partially hydrolyzed lupin beta-(1-->4)-galactans of various chain lengths as exogenous acceptors, while activity to endogenous acceptors was negligible. Maximal activity occurred at pH 6.5 and 20-25 degrees C in the presence of 25 mM Mn(2+) and 0.75% Triton X-100. The transfer reaction onto the unmodified commercial pectic galactan ( M(r)>150000) from lupin we used was very low but increased when the M(r) of the galactan was reduced by partial acid hydrolysis. Among the partially hydrolyzed galactans, high- M(r) (average M(r) 60000) beta-(1-->4)-galactan was a more efficient acceptor [specific activity 2000-3000 pmol min(-1) (mg protein)(-1)] than low- M(r) (average M(r) 10000 and 5000) polymers. Digestion of the radiolabeled product from high- M(r) galactan with endo-beta-(1-->4)-galactanase released mainly radioactive beta-(1-->4)-galactobiose and Gal, indicating that the transfer of [(14)C]Gal occurred through beta-(1-->4)-linkages. HPLC analysis showed that the enzyme also catalyzes incorporation of Gal into pyridylaminated (PA) beta-(1-->4)-galactooligomers with degree of polymerization at least 5. Gal(7)-PA chains were elongated by attachment of one, two, or three Gal residues leading to the formation of Gal(8-10)-PA.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center