Send to

Choose Destination
See comment in PubMed Commons below
Amino Acids. 2003 Dec;25(3-4):323-39. Epub 2003 Aug 21.

Thiolation and nitrosation of cysteines in biological fluids and cells.

Author information

Department of Neuroscience, University of Siena, Italy.


Thiols (RSH) are potent nucleophilic agents, the rates of which depend on the pKa of the sulfhydryl. Unlike compounds having other nucleophile moieties (-OH or -NH(2)), RSH are involved in reactions, such as conjugations, redox and exchange reactions. Although protein SH groups (PSH) react like non-protein thiols (NPSH), the biochemistry of proteins is much more complex for reasons such as steric hindrance, charge distribution and accessibility of PSH to the solvent (protein conformation). The reaction rates and types of end-products of PSH vary a lot from protein to protein. The biological problem is even more complex because in all compartments and tissues, there may be specific competition between thiols (namely between GSH and PSH), regulated by the properties of antioxidant enzymes. Moreover, PSH are divided biologically into essential and non-essential and their respective influence in the various biological systems is unknown. It follows that during phenomena eliciting a prompt thiol response (oxidative stress), the antioxidant PSH response and reaction mechanisms vary considerably from case to case. For example, in spite of a relatively low pKa that should guarantee good antioxidant capacity, PSH of albumin has much less propensity to form adducts with conjugating agents than NPSH; moreover, the structural characteristics of the protein prevent albumin from forming protein disulfides when exposed to oxidants (whereas protein-thiol mixed disulfides are formed in relative abundance). On the other hand, proteins with a relatively high reactivity, such rat hemoglobin, have much greater antioxidant capacity than GSH, but although human hemoglobin has a pKa similar to GSH, for structural reasons it has less antioxidant capacity than GSH. When essential PSH are involved in S-thiolation and S-nitrosation reactions, a similar change in biological activity is observed. S-thiolated proteins are a recurrent phenomenon in oxidative stress elicited by reactive oxygen species (ROS). This event may be mediated by disulfides, that exchange with PSH, or by the protein intermediate sulfenic acid that reacts with thiols to form protein-mixed disulfides. During nitrosative stress elicited by reactive nitrogen species (RNS), depending on the oxygen concentration of the system, nitrosation reactions of thiols may also be accompanied by protein S-thiolation. In this review we discuss a number of cell processes and biochemical modifications of enzymes that indicate that S-thiolation and S-nitrosation may occur simultaneously in the same protein in the presence of appropriate interactions between ROS and RNS.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center