Format

Send to

Choose Destination
Mol Biol Evol. 2004 Mar;21(3):468-88. Epub 2003 Dec 5.

Phylogenetic estimation of context-dependent substitution rates by maximum likelihood.

Author information

1
Center for Biomolecular Science and Engineering, University of California, Santa Cruz, USA. acs@soe.ucsc.edu

Abstract

Nucleotide substitution in both coding and noncoding regions is context-dependent, in the sense that substitution rates depend on the identity of neighboring bases. Context-dependent substitution has been modeled in the case of two sequences and an unrooted phylogenetic tree, but it has only been accommodated in limited ways with more general phylogenies. In this article, extensions are presented to standard phylogenetic models that allow for better handling of context-dependent substitution, yet still permit exact inference at reasonable computational cost. The new models improve goodness of fit substantially for both coding and noncoding data. Considering context dependence leads to much larger improvements than does using a richer substitution model or allowing for rate variation across sites, under the assumption of site independence. The observed improvements appear to derive from three separate properties of the models: their explicit characterization of context-dependent substitution within N-tuples of adjacent sites, their ability to accommodate overlapping N-tuples, and their rich parameterization of the substitution process. Parameter estimation is accomplished using an expectation maximization algorithm, with a quasi-Newton algorithm for the maximization step; this approach is shown to be preferable to ordinary Newton methods for parameter-rich models. Overlapping tuples are efficiently handled by assuming Markov dependence of the observed bases at each site on those at the N - 1 preceding sites, and the required conditional probabilities are computed with an extension of Felsenstein's algorithm. Estimated substitution rates based on a data set of about 160,000 noncoding sites in mammalian genomes indicate a pronounced CpG effect, but they also suggest a complex overall pattern of context-dependent substitution, comprising a variety of subtle effects. Estimates based on about 3 million sites in coding regions demonstrate that amino acid substitution rates can be learned at the nucleotide level, and suggest that context effects across codon boundaries are significant.

PMID:
14660683
DOI:
10.1093/molbev/msh039
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center