Format

Send to

Choose Destination
J Biol Chem. 2004 Feb 20;279(8):6629-34. Epub 2003 Dec 4.

Involvement of IRAK-M in peptidoglycan-induced tolerance in macrophages.

Author information

1
Department of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.

Abstract

The molecular mechanisms by which pathogen-associated molecular patterns recognized by TLR2, such as peptidoglycan (PGN), induce homotolerance are largely unknown. It was recently reported that IRAK-M negatively regulates TLR signaling. In this study, we elucidate the molecular mechanisms of tolerance induced by PGN, with a focus on the role of IRAK-M. We demonstrate that pretreatment of macrophage RAW264.7 cells with a high concentration (30 microg/ml) of PGN for 16 h effectively induces tolerance against following stimulation with 30 microg/ml of PGN; while pretreatment with a low concentration (1 microg/ml) of PGN does not. IRAK-M is induced in cells treated with the high concentration of PGN 4-24 h after PGN stimulation, but not in cells treated with the low concentration of PGN up to 24 h after stimulation. Phosphorylation of MAPKs and IkappaBalpha is inhibited after the second PGN stimulation in tolerant cells. Kinase activity of IRAK-1 and association between IRAK-1 and MyD88 are also suppressed in PGN-induced tolerant cells. Furthermore, down-regulation of IRAK-M expression by small interfering RNAs specific for IRAK-M reinstates the production of TNF-alpha after PGN restimulation. These results suggest that induction of IRAK-M and inhibition of kinase activity of IRAK-1 are crucial to PGN-induced tolerance in macrophages.

PMID:
14660668
DOI:
10.1074/jbc.M308620200
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center