Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Feb 27;279(9):7893-900. Epub 2003 Dec 2.

Mutant (R406W) human tau is hyperphosphorylated and does not efficiently bind microtubules in a neuronal cortical cell model.

Author information

1
Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.

Abstract

Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17) is an autosomal dominant neurodegenerative disorder caused by mutations in the gene that encodes for tau, a microtubule-binding protein. Neuropathologically the disease is characterized by extensive neuronal loss in the frontal and temporal lobes and the filamentous accumulation of hyperphosphorylated tau. The R406W missense mutation was originally described in an American and a Dutch family. Although R406W tau is hyperphosphorylated in FTDP-17 cases, R406W tau expressed in cell model systems has not shown increased phosphorylation. The purpose of this study was to establish a neuronal model system in which the phosphorylation of R406W tau is increased and thus more representative of the in vivo situation. To accomplish this goal immortalized mouse cortical cells that express low levels of endogenous tau were stably transfected with human wild type or R406W tau. In this neuronal model R406W tau was more highly phosphorylated at numerous epitopes and showed decreased microtubule binding compared with wild type tau, an effect that could be reversed by dephosphorylation. In addition the expression of R406W tau in the cortical cells resulted in increased cell death as compared with wild type tau-expressing cells when the cells were exposed to an apoptotic stressor. These results indicate that in an appropriate cellular context R406W tau is hyperphosphorylated, which leads to decreased microtubule binding. Furthermore, expression of R406W tau sensitized cells to apoptotic stress, which may contribute to the neuronal cell loss that occurs in this FTDP-17 tauopathy.

PMID:
14660557
DOI:
10.1074/jbc.M311203200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center