Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2003 Nov 20;42(33):6682-95.

Nitric-oxide planar laser-induced fluorescence applied to low-pressure hypersonic flow fields for the imaging of mixture fraction.

Author information

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.


The scalar-field imaging of a hypersonic mixing flow is performed in a mixing facility that is shock tunnel driven. The instantaneous mixture-fraction field of a hypersonic two-dimensional mixing layer (M1 = 5.1, M2 = 0.3) is determined with a temperature-insensitive planar laser-induced fluorescence technique with nitric oxide (NO) as the tracer species. Single-shot images are obtained with the broadband excitation of a reduced temperature-sensitivity transition in the A2 sigma+ <-- X2 II(1/2) (0, 0) band of NO near 226 nm. The instantaneous mixture-fraction field at a convective Mach number of 2.64 is shown to be nearly identical to a typical diffusive process, supporting the notion of gradient-transport mixing models for highly compressible mixing layers.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center