Format

Send to

Choose Destination
Med Sci Sports Exerc. 2003 Dec;35(12):1998-2004.

PGC-1alpha genotype modifies the association of volitional energy expenditure with [OV0312]O2max.

Author information

1
Institute of Public Health, University of Cambridge, United Kingdom.

Abstract

Sedentary lifestyles are increasingly common and result in low cardiorespiratory fitness ([OV0312]O2max), a well-established predictor of early mortality and coronary heart disease (CHD). Adaptation in [OV0312]O2max after exercise training varies considerably between people. Because there are hereditary components to fitness, it is likely that genetic factors explain some of this variability. PPARGC1 (PGC-1alpha) coactivates genes involved in energy transduction and mitochondrial biogenesis. Transgenic mouse data demonstrate that overexpression of PGC-1alpha mRNA increases endurance capacity by transformation of nonoxidative to oxidative skeletal muscle tissue. Other murine studies demonstrate that exercise increases PGC-1alpha mRNA expression.

PURPOSE:

To explore whether a candidate polymorphism in the PGC-1alpha gene modifies the association between physical activity energy expenditure (PAEE) and predicted [OV0312]O2max ([OV0312]O2max.pred).

METHOD:

We examined whether the Gly482Ser polymorphism of PGC-1alpha modified the relationship between objectively measured PAEE and [OV0312]O2max.pred in a population-based sample of 599 healthy middle-aged people. PAEE was assessed using individual calibration with 4 d of heart rate monitoring. [OV0312]O2max.pred was measured during a submaximal exercise stress test on a bicycle ergometer.

RESULTS:

Homozygosity at the Ser482 allele was found in 12.7% of the cohort, whereas 38.9% and 48.4% carried the Gly482Gly and Gly482Ser genotypes, respectively. The association between PAEE and [OV0312]O2max.pred (mL x kg(-1) x min(-1)) was strongest in people homozygous for the Ser482 allele (beta = 12.03; P < 0.00001) compared with carriers of the Gly allele (beta = 5.61; P < 0.00001). In a recessive model for the Ser482 allele, the interaction between PAEE and genotype on [OV0312]O2max.pred (L x min(-1)) was highly significant (P = 0.009).

CONCLUSION:

Our results indicate that Ser482 homozygotes may be most capable of improving cardiorespiratory fitness when physically active, and that Gly482Ser may explain some of the between-person variance previously reported in cardiorespiratory adaptation after exercise training.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center