Format

Send to

Choose Destination
J Natl Cancer Inst. 2003 Dec 3;95(23):1758-64.

Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine.

Author information

1
The Breast Cancer Program, Department of Medicine, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC, USA.

Abstract

BACKGROUND:

Tamoxifen, a selective estrogen receptor modulator (SERM), is converted to 4-hydroxy-tamoxifen and other active metabolites by cytochrome P450 (CYP) enzymes. Selective serotonin reuptake inhibitors (SSRIs), which are often prescribed to alleviate tamoxifen-associated hot flashes, can inhibit CYPs. In a prospective clinical trial, we tested the effects of coadministration of tamoxifen and the SSRI paroxetine, an inhibitor of CYP2D6, on tamoxifen metabolism.

METHODS:

Tamoxifen and its metabolites were measured in the plasma of 12 women of known CYP2D6 genotype with breast cancer who were taking adjuvant tamoxifen before and after 4 weeks of coadministered paroxetine. We assessed the inhibitory activity of pure tamoxifen metabolites in an estradiol-stimulated MCF7 cell proliferation assay. To determine which CYP isoforms were involved in the metabolism of tamoxifen to specific metabolites, we used CYP isoform-specific inhibitors. All statistical tests were two-sided.

RESULTS:

We separated, purified, and identified the metabolite 4-hydroxy-N-desmethyl-tamoxifen, which we named endoxifen. Plasma concentrations of endoxifen statistically significantly decreased from a mean of 12.4 ng/mL before paroxetine coadministration to 5.5 ng/mL afterward (difference = 6.9 ng/mL, 95% confidence interval [CI] = 2.7 to 11.2 ng/mL) (P =.004). Endoxifen concentrations decreased by 64% (95% CI = 39% to 89%) in women with a wild-type CYP2D6 genotype but by only 24% (95% CI = 23% to 71%) in women with a variant CYP2D6 genotype (P =.03). Endoxifen and 4-hydroxy-tamoxifen inhibited estradiol-stimulated MCF7 cell proliferation with equal potency. In vitro, troleandomycin, an inhibitor of CYP3A4, inhibited the demethylation of tamoxifen to N-desmethyl-tamoxifen by 78% (95% CI = 65% to 91%), and quinidine, an inhibitor of CYP2D6, reduced the subsequent hydroxylation of N-desmethyl-tamoxifen to endoxifen by 79% (95% CI = 50% to 108%).

CONCLUSIONS:

Endoxifen is an active tamoxifen metabolite that is generated via CYP3A4-mediated N-demethylation and CYP2D6-mediated hydroxylation. Coadministration of paroxetine decreased the plasma concentration of endoxifen. Our data suggest that CYP2D6 genotype and drug interactions should be considered in women treated with tamoxifen.

PMID:
14652237
DOI:
10.1093/jnci/djg108
[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center