Send to

Choose Destination
Prog Brain Res. 2004;145:235-51.

Knockout and knockin mice to investigate the role of nicotinic receptors in the central nervous system.

Author information

Laboratoire de Neurobiologie Moléculaire, Centre National de la Recherche scientifique, Unité de Recherche Associée 2182 Récepteurs et Cognition, Institut Pasteur, 75724 Paris, France.


The recent use of genetically engineered knockout (Ko) and knockin (Kin) animals for neurotransmitter receptor genes, in particular, nicotinic acetylcholine receptors (nAChRs) in the brain, has provided a powerful alternative to the classical pharmacological approach. These animal models are not only useful in order to reexamine and refine the results derived from pharmacological studies, but they do also provide a unique opportunity to determine the subunit composition of the nicotinic receptors which modulate various brain functions. Ultimately, this knowledge will be valuable in the process of designing new drugs that will mimic the effects of nicotine on several important pathologies or on smoking cessation therapies. In this review, we present recent data obtained from the studies of mutant animals that contributed to our understanding of the role and composition of nAChRs in the central nervous system (CNS). The advantages and pitfalls of Ko animal models will also be discussed.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center