Send to

Choose Destination
Psychoneuroendocrinology. 2004 Apr;29(3):307-26.

Peripheral selectivity and apparent efficacy of dynorphins: comparison to non-peptidic kappa-opioid agonists in rhesus monkeys.

Author information

Laboratory on the Biology of Addictive Diseases, Rockefeller University (Box 171), 1230 York Avenue, New York, NY 10021, USA.


The potency and effectiveness of dynorphin A(1-17), E-2078 (a synthetic dynorphin A(1-8) analog) and non-peptidic kappa-opioid agonists were studied in rhesus monkeys in two assays: 1) a drug discrimination assay with the centrally-penetrating kappa-agonist U69,593 as the training stimulus (n=3) and 2) a prolactin release assay; a neuroendocrine effect thought to be mediated by kappa-receptors located in hypothalamic nuclei outside the blood-brain barrier. The non-peptidic kappa-agonists, U69,593 and bremazocine (0.00032-0.01 mg/kg, s.c.) were dose-dependently generalized by all the subjects trained to discriminate U69,593. U69,593 and bremazocine also caused dose-dependent prolactin release (n=4). By contrast, dynorphin A(1-17) and E-2078 (0.1-1 mg/kg, i.v.) were only generalized by one of the U69,593 discriminating subjects. However, both these dynorphins produced potent and robust prolactin release (0.0032-0.032 mg/kg, i.v.), when tested under an identical time course design as above. Naltrexone (0.1 or 0.32 mg/kg), caused a parallel rightward shift in the dose-effect curves for all the above ligands, consistent with kappa-receptor mediation of this neuroendocrine effect. The peripherally selective antagonist, quaternary naltrexone (0.32 mg/kg, s.c.) partially blocked the neuroendocrine effects of U69,593 and E-2078 (0.0032 mg/kg, s.c. and i.v., respectively). Overall, these findings are consistent with the hypothesis that the dynorphins act as high efficacy, peripherally selective kappa-agonists following systemic administration in primates.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center